

NÚMEROS COMPLEJOS: REPRESENTACIÓN GRÁFICA (PARTE 1)

ÁLGEBRA CBC (INGENIERÍA) EFRAÍN CAMACHO

REPRESENTACIÓN GRÁFICA DE NÚMEROS COMPLEJOS

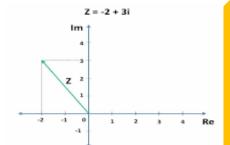
Para representar números complejos en un sistema de coordenadas, se representa la parte real en el eje x y la parte imaginaria en el eje y.

El conjugado de un número complejo es simétrico con respecto al eje real x.

El inverso de un número complejo es simétrico respecto al origen del sistema de coordenadas.

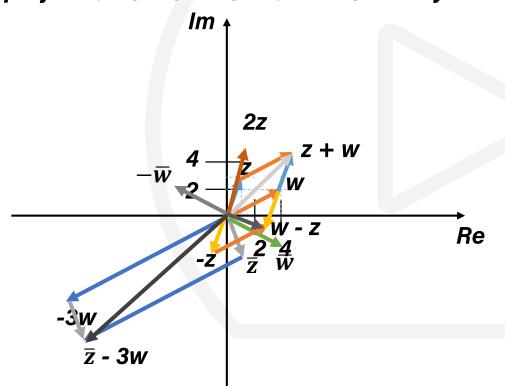
Para representar un múltiplo de un número complejo, se extiende la longitud de su vector, tantas veces lo indique el escalar que multiplica al número complejo.

Para representar la suma de dos números complejos, se utiliza la suma de vectores.



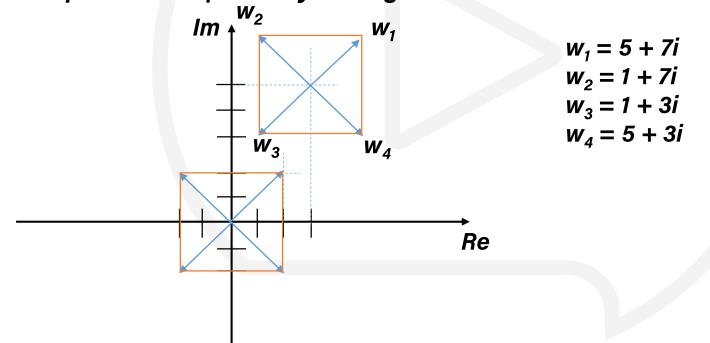
EJERCICIO

Dados z=1+3i y w=4+2i, representar en el plano, sin calcularlos, los números complejos \overline{z} , -z, 2z, -3w, - \overline{w} , z+w, w-z y \overline{z} - 3w.



EJERCICIO

Sabiendo que 2+2i; -2+2i; -2-2i y 2-2i son los vértices de un cuadrado de lados paralelos a los ejes cuyas diagonales se cortan en z=0, hallar w_1 , w_2 , w_3 , $w_4 \in C$ que sean los vértices de un cuadrado de lados paralelos a los ejes del mismo tamaño que el dado pero cuyas diagonales se corten en z=3+5i.



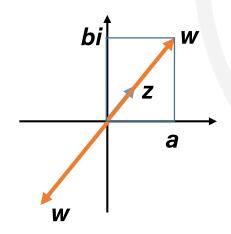
EJERCICIO

Dado $z = \frac{1}{2} + \frac{\sqrt{3}}{2}i$, hallar $a, b \in R$ no nulos tales que w = a + bi sea múltiplo real de z y la diagonal del rectángulo de vértices 0, a, w y bi en el plano complejo mida 7.

Como w es múltiplo de z, entonces $w = \alpha z$:

$$w = a + bi = \alpha \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)$$

La diagonal del rectángulo es el módulo de w(|w| = 7).



$$|w| = |\alpha| \left| \frac{1}{2} + \frac{\sqrt{3}}{2} i \right| = |\alpha| \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = |\alpha| \sqrt{\frac{1}{4} + \frac{3}{4}}$$

$$= |\alpha| \sqrt{1} = |\alpha| \to |\alpha| = |w| \to \alpha = 7; \alpha = -7$$

$$w = 7 \left(\frac{1}{2} + \frac{\sqrt{3}}{2} i\right) = \frac{7}{2} + \frac{7\sqrt{3}}{2} i$$

$$w = -7 \left(\frac{1}{2} + \frac{\sqrt{3}}{2} i\right) = -\frac{7}{2} - \frac{7\sqrt{3}}{2} i$$

GRACIAS POR TU ATENCIÓN